Мы используем теорему Байеса, когда хотим вычислить, как новые наблюдения влияют на наше понимание мира. Допустим, у нас есть некоторое событие, вероятность которого мы знаем. Теперь мы получили новые данные, которые как-то связаны с этим событием. Как изменится вероятность события после этих наблюдений? Это и есть главный вопрос, на который можно ответить, воспользовавшись формулой с картинки👆
✍️Пример
Представим, что вы хотите узнать вероятность того, что человек болен гриппом (событие A), если он чихает (событие B). Вы знаете, что: ▪️Вероятность того, что человек чихает, если у него грипп, составляет 90% (P(B|A) = 0.9). ▪️Вероятность чихания для всех людей — 10% (P(B) = 0.1). ▪️Вероятность того, что человек болен гриппом — 1% (P(A) = 0.01).
Подставив это всё в формулу, получаем ответ 0.09, или 9%.
👀 Так, теорема Байеса отвечает за переход от априорной вероятности (до наблюдения) к апостериорной вероятности (после наблюдения).
Мы используем теорему Байеса, когда хотим вычислить, как новые наблюдения влияют на наше понимание мира. Допустим, у нас есть некоторое событие, вероятность которого мы знаем. Теперь мы получили новые данные, которые как-то связаны с этим событием. Как изменится вероятность события после этих наблюдений? Это и есть главный вопрос, на который можно ответить, воспользовавшись формулой с картинки👆
✍️Пример
Представим, что вы хотите узнать вероятность того, что человек болен гриппом (событие A), если он чихает (событие B). Вы знаете, что: ▪️Вероятность того, что человек чихает, если у него грипп, составляет 90% (P(B|A) = 0.9). ▪️Вероятность чихания для всех людей — 10% (P(B) = 0.1). ▪️Вероятность того, что человек болен гриппом — 1% (P(A) = 0.01).
Подставив это всё в формулу, получаем ответ 0.09, или 9%.
👀 Так, теорема Байеса отвечает за переход от априорной вероятности (до наблюдения) к апостериорной вероятности (после наблюдения).
BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.
What is Telegram?
Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.
Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ar